师资队伍

数学和计算机组

Alena PIRUTKA
  • 数学
  • 邮箱:alena.pirutka@polytechnique.edu

巴黎综合理工学院访问教授

主讲课程:An Introduction to Finite Fields

CURRICULUM VITAE
Noms et prénoms: PIRUTKA ALENA
Adresse email: alena.pirutka@polytechnique.edu
Professor – senior Scientist, PhD
Ecole – Département, Spécialité : Mathematiques
Diplôme : PhD 
Scientific production
1.  Cohomologie non ramifiée en degré trois d'une variété de Severi-Brauer, C. R. Acad. Sci. Paris, Ser. I 349 (2011), 369-373.
2. Sur le groupe de Chow de codimension deux des variétés sur les corps finis, Algebra and Number Theory 5-6 (2011), 803-817.
3. R-equivalence on low degree complete intersections, J. Algebraic Geom. 21 (2012), 707-719.
4. R-équivalence sur les familles de variétés rationnelles et méthode de la descente, Journal de Théorie des Nombres de Bordeaux 24, no. 2, (2012), 461-473.
5. Invariants birationnels dans la suite spectrale de Bloch-Ogus, Journal of K-theory 10 (2012), 565-582.
6. A bound to kill the ramification over function fields, J. Algebra 377 (2013), 173-178 .
    (with F. Charles) La conjecture de Tate entière pour les cubiques de dimension quatre sur un corps fini, Compositio Mathematica 151, no. 2, (2015), 253-264.
7. (with N. Yagita) Note on the counterexamples for the integral Tate conjecture over finite fields, Documenta Math. Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday, (2015), 501-511.
8. Sur la cohomologie non ramifiée en degré trois d'un produit, to appear in Bulletin de la SMF.
9. On a local-global principle for H3 of function fields of surfaces over a finite field, to appear in the proceedings "Brauer groups and obstruction problems: moduli spaces and arithmetic (Palo Alto, 2013)."
10. (with J.-L. Colliot-Thélène) Hypersurfaces quartiques de dimension 3 : non rationalité stable, to appear in Annales Scientifiques de l'Ecole Normale Supérieure.
Teaching Activities
Graduate and undergraduate courses in Algebra at Ecole Polytechnique and at Courant Institute, NYU.   Mini-courses during various summer schools and thematic programs in Algebraic Geometry. 
Research Activities
Alena Pirutka works in arithmetic and algebraic geometry, which is a vast area, originating in the theory of diophantine equations. In particular, she explores connections between arithmetic, cohomological, and birational properties of algebraic varieties, such as questions concerning rationality of algebraic varieties and invariants arising in the theory of algebraic cycles. 
Personal Page web 

cims.nyu.edu/~pirutka/" style="color: rgb(51, 102, 153); text-decoration: none; cursor: pointer; font-size: 10pt;" target="_blank">http: