师资队伍
Faculty
钟圣怡
职务 : 教授、中方专业协调人、博士生导师
电话 : 021-54741669 邮箱 : shengyi.zhong@sjtu.edu.cn
地址 : 433
钟圣怡


学习经历


2003.09-2007.07:上海交通大学,材料科学与工程学院,学士

2007.09-2009.07:法国国立高等工程与技术学院,机械工程师/材料学硕士

2009.10-2012.09:法国原子能署-巴黎11大,核材料中子散射表征,博士

 

工作经历:


2012.09-2015.12:上海交通大学,巴黎高科卓越工程师学院/材料科学与工程学院(双聘)讲师

2016.01-2020.12:上海交通大学,巴黎高科卓越工程师学院/材料科学与工程学院(双聘)副教授

2019.01-至今:上海交通大学,材料科学与工程学院,博导

2021.01-至今:上海交通大学,巴黎高科卓越工程师学院/材料科学与工程学院(双聘)教授

  

个人介绍:


钟圣怡,上海交通大学巴黎卓越工程师学院、材料科学与工程学院双聘教授,博士生导师,国家重点研发计划首席科学家,上海市东方学者特聘教授。2007年本科毕业于上海交通大学材料学院,2012年于法国原子能署—巴黎第11大学(联培)获核技术方向博士学位。

 

主要研究方向为中子散射材料表征技术,主持上海交大中子衍射工程应力谱仪“河图”和中子小角散射谱仪“洛书”的自主设计和建设工作,担任上海交通大学中子科学研究中心主任。先后主持包括国家重点研发计划项目、3项国家自然科学基金、航空科学基金等十余项科研项目,在Acta MaterialiaInternational Journal of Plasticity等学术期刊上发表SCI期刊论文40 余篇,申请发明专利20 余项、撰写国家标准2项,主编本科教材2本,2017、2022年两次获上海市教学成果一等奖。


科研平台:


上海交通大学中子科学研究中心

微信公众号:中子科学实验室

 

欢迎各位本科、研究生、博后以及青年学者加入!

联系邮箱:shengyi.zhong@sjtu.edu.cn


主要科研项目:


2022-2026:国家重点研发计划《面向核结构材料服役评价的多参量中子同步测试新技术》,负责人

2021-2023:上海交通大学重点前瞻布局基金《面向航空发动机关键部件的中子衍射应力仪光束精密控制系统》,负责人

2020-2022:国家自然科学基金《基于CMRR堆RSND谱仪的中子三维定向衍射技术开发》,负责人

2019-2022:上海交通大学重点建设项目《中子科学及应用技术研究平台建设》,主要负责人

2019-2022:国家自然科学基金《针对金属材料纳米结构的中子/高能X射线小角散射定量研究》,负责人

2019-2020:中物院中子物理学重点实验室课题《多晶材料的三维定向中子原位衍射方法研究》,负责人

2018-2020:航空科学基金《铝基复合材料超塑性变形机制及本构模型研究》,负责人

2014-2016:国家科学自然基金《超细晶铝合金纳米析出相的 SANS/SAXS 研究》,负责人

 

主要科研论文:


  1. Design of a three-detector system on LUOSHU: a small-angle neutron scattering instrument at China Mianyang Research Reactor, Yifei Tang, Shengyi Zhong*, Guanyun Yan, Jie Chen, Journal of Applied Crystallography, 56, 2023, 1252-1260

  2. Quantitative assessment of the influence of the Portevin-Le Chatelier effect on the flow stress in precipitation hardening AlMgScZr alloys,Han Chen, Yanchi Chen, Yifei Tang, Gang Ji, Yves Bréchet, Shengyi Zhong*, Haowei Wang, Guanyun Yan, Zhe Chen*, Acta Materialia, 255, 2023, 119060

  3. Statistical analysis of slip transfer in Al alloy based on in-situ tensile test and high-throughput computing method, Xiaojiao You, Jian Yang, Chengyi Dan, Qiwei Shi, Shengyi Zhong, Haowei Wang, Zhe Chen, International Journal of Plasticity, 166, 2023, 103649

  4. Fabrication of equiaxed ultrafine-grained structures in TiB2/Al-Mg-Gd neutron shielding composites by powder metallurgy routines, Chen Yang, Kangbao Wang, Chenyi Dan, Jie Huang, Mingliang Wang*, Zhe Chen, Shengyi Zhong* , Xianfeng Li, Haowei Wang, Materials Characterization, 200, 2023, 112889

  5. Structural-functional integrated TiB2/Al–Mg-Gd composite with efficient neutron shielding phases and superior mechanical properties, Yang Chen, Yuechen Chen, Haoyu Zhai, Feifei Wang, Mingliang Wang, Zhe Chen, Shengyi Zhong*, Xianfeng Li, Haowei Wang, Intermetallics, Volume 148, 2022, 107630

  6.  VSAS: a smart small-angle scattering data processing tool,  S Shi, S Zhong*, L Jin, Y Tang, H Lin, Nuclear Analysis, 2022, 100012

  7. HRTex: a high-resolution texture data processing tool for monochromatic neutron diffraction based on the pixel projection methodJian Yang, Shengyi Zhong*, Vladimir Luzin, Jian Li, Xiaolong Liu, Chengyi Dan, Journal of Applied Crystallography,2022, 55, 425-435

  8. Effects of nanosized precipitates on the Portevin-Le Chatelier behavior: Model prediction and experimental verification, H Chen, Z Chen, Y Chen, G Ji, S Zhong, H   Wang, Y Ke, Y Bréchet, Materialia 21, 2022, 101299

  9. The influence of shearable and nonshearable precipitates on the Portevin-Le Chatelier behavior in precipitation hardening AlMgScZr alloys,  Han Chen, Zhe Chen*, Gang Ji, Shengyi Zhong*, Haowei Wang, András Borbély, Yubin Ke, Yves Bréchet, International Journal of Plasticity 147, 2021,103120

  10. Constitutive modeling of flow stress and work hardening behavior while considering dynamic strain aging, Han Chen, Zhe Chen*, Jun Liu, Yi Wu, Chengyi Dan, Shengyi Zhong*, Haowei Wang, Yves Bréchet, Materialia 18, 2021,101137

  11. Braking Force Model on Virus Transmission to Evaluate Interventions Including the Administration of COVID-19 Vaccines - Worldwide, 2019-2021, Zhong Shengyi,Chen Zhe,Wang Yun,Sheng Pucong,Shi Shuxin,Lyu Yongxi,Bai Ruobing,Wang Pengyu,Dong Jiangjing,Ba Jianbo,Qu Xinmiao,Lu Jian. China CDC weekly,2021,3(41):

  12. Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloyH Chen, Z Chen*, G Ji, S Zhong*, H Wang, A Borbély, Y Ke, Y BrechétInternational Journal of Plasticity 139, 2021,102971

  13. The neutron shielding modeling and experimental characteristic in TiB2/Al compositesH Zhai, S Zhong*, J Li, Y Chen, Y Cui, Z Chen, G Sun, H WangMaterials Today Communications 27, 2021,102194

  14. Spark plasma sintering mechanisms of the Al-Zn-Mg-Cu alloys and TiB2/Al-Zn-Mg-Cu compositesQ. Yang D.L. ChengF.G. ZhangQ.W. ShiZ. Chen*M.L. WangS.Y. Zhong* Y. WuH.W. WangMaterials Characterization172, 2021, 110825

  15. Strategy of Residual Stress Determination on Selective Laser Melted Al Alloy Using XRDYujiong Chen, Hua Sun, Zechen Li Yi Wu, Yakai Xiao, Zhe Chen Shengyi Zhong* Haowei WangMaterials, 2020, 13, 451

  16. Anisotropic behavior of TiB2 nanoparticles reinforced 2024Al composites rolling sheet, J.M. Lia, J. Liu, L. Wang, Z. Chen, Q.W. Shi, C.Y. Dan, Y. Wu, S.Y.Zhong*, H.W. Wang; Materials Characterization, 2020, 162, 110196.

  17. Microstructure and mechanical response of TiB2/Al–Zn–Mg–Cu composites with more addition of Zn. Yang, Q., Shen, Y., Liu, J., Wang, L., Chen, Z., Wang, M.L., Zhong, S.Y*., Wu, Y., Wang, H.W., Journal of Alloys and Compounds 816, 2020, 152584.

  18. A new powder metallurgy routine to fabricate TiB2/Al–Zn–Mg–Cu nanocomposites based on composite powders with pre-embedded nanoparticles. Q. Yang, Y. Ma, Z. Chen*, G. Ji, M. L. Wang, S. Y. Zhong*, Y. Wu, V. Ji, H. W. Wang, Materialia 8, 100458 (2019)

  19. Microstructure evolution of the rapidly solidified alloy powders and composite powders. Q. Yang, Y. T. Liu, J. Liu, L. Wang, Z. Chen*, M. L. Wang, S. Y. Zhong*, Y. Wu, H. W. Wang, Materials & Design 182, 108045 (2019)

  20. Microstructure and mechanical response of TiB2/Al-Zn-Mg-Cu composites with more addition of Zn, Q Yang, Y Shen, J Liu, L Wang, Z Chen, ML Wang, SY Zhong, Y Wu, HW Wang, JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 152584

  21. Cube orientation bands observed in largely deformed Al-Sc alloys containing shearable precipitatesC.Y. Dan, Z. Chen⁎, G. Ji, S.Y. Zhong⁎, J. Li, X.R. Li, F. Brisset, G.A. Sun, H.W. Wang, V. JiScripta Materialia 166 (2019) 139-143

  22. Improved structural homogeneity and mechanical properties of nanoparticles reinforced Al composites after orthogonal thermomechanical processes. Liu, Jun, Zhe Chen, Fengguo Zhang, Gang Ji, Yu Ma, Mingliang Wang, Shengyi Zhong*, Jian Li, Hong Wang, and Haowei Wang. Journal of Alloys and Compounds (2018). 767:293-301.

  23.  Multi-scale study of microstructure evolution in hot extruded nano-sized TiB 2 particle reinforced aluminum composites, Z Chen, GA Sun, Y Wu, MH Mathon, A Borbely, D Chen, G Ji, ML Wang, SY Zhong*, HW Wang, Materials & Design, 116(2017) 577-590

  24. Structural, elastic and thermodynamic properties of Mo3Si and Mo3Ge, S.Y. Zhong, Z.Chen*, M.L. Wang*, Dong Chen, Eur. Phys. J. B, 89(1): 1-10, 2016

  25. Modeling of structural hardening of oxide dispersion strengthened (ODS) ferritic alloys, S.Y. Zhong, V. Klosek*, Y. de Carlan, M.H. Mathon, J. Mater. Sci, 5120162540-2549

  26.  The effects of nanosized particles on microstructural evolution of an in-situ TiB2/6063Al composite produced by friction stir processing, Z. Chen, J. Li, A. Borbely, G. Ji , S.Y. Zhong*, Y. Wu, M.L. Wang, H.W. Wang, Mater. Design. 88 (2015) 999-1007 

  27. Effect of Cr content and heat-treatment on the High temperature strength of eutectic Al-Si alloys, Y. Yang, S.Y. Zhong*, Z. Chen, M. Wang, N. Ma, H. W. Wang, J. Alloy. Compd, 647 (2015) 63-69

  28. The effect of Y/ti ratio on oxide precipitate evolution in ODS fe-14 wt. Pct. Cr alloys. S.Y. Zhong*, J. Ribis, N. Lochet, Y. de Carlan, V. Klosek, V. Ji, M.H. Mathon, Metall. Mater. Trans A, 46 (2015) 1413-1418

  29. Influence of nano-particle coherency degree on the coarsening resistivity of the nano-oxide particles of Fe-14Cr-1W ODS alloys. S.Y. Zhong*, J. Ribis, N. Lochet, Y. de Carlan, V. Klosek, M.H. Mathon, J. Nucl. Mater. 455(2014) 618-623

  30. The effect of Ti/Y ratio on the recrystallisation behaviour of Fe-14%Cr oxide dispersion-strengthened alloys, S.Y. Zhong*, J. Ribis, T. Baudin, N. Lochet, Y. de Carlan, V. Klosek, M.H. Mathon, J. Nucl. Mater. 452 (2014) 359-363

  31. Study of the thermal stability of nanoparticle distributions in an oxide dispersion strengthened (ODS) ferritic alloys S.Y. Zhong*, J. Ribis, V. Klosek, Y. de Carlan, N. Lochet, V. Ji, M.H. Mathon, J. Nucl. Mater, 428 (2012) 154-159 

  32. Grazing-incidence small angle neutron scattering achieved in spectrometer SANS-Suanni of transmission geometry, Jie Chen, Lizhao Huang, Tingting Yang, Chaowen Yang, Shengyi Zhong, Guangai Sun, Guanyun Yan, Dong LiuNucl. Instrum. Methods Phys. Res. Section A1051(2023)168228

  33.   Processing Laue Microdiffraction Raster Scanning Patterns with Machine Learning Algorithms: A Case Study with a Fatigued Polycrystalline Sample Peng Rong, Fengguo Zhang*, Qing Yang, Han Chen, Qiwei Shi, Shengyi Zhong, Zhe Chen and Haowei Wang, materials, 2022, 15, 1502.

  34. The effect of TiB2 ceramic particles on Portevin–Le Chatelier behavior of TiB2/AlMg metal matrix composites, Han Chen, Zhe Chen, Yuchi Cui, Lei Wang, Mingliang Wang, Jun Liu, Shengyi Zhong, Haowei Wang, Journal of Materials Research and Technology, 14(2021)2302-2311

  35.  Residual-based pattern center calibration in high-resolution electron backscatter diffraction, Hongru Zhong, Qiwei Shi, Zhe Chen, Chengyi Dan, Shengyi Zhong, Haowei Wang, Micron 146, 2021,103081

  36.  Microstructural evolution and mechanical property of nanoparticles reinforced Al matrix composites during accumulative orthogonal extrusion process. Liu, J., Chen, Z., Zhang, F., Ji, G., Zhong, S., Wu, Y., Wang, M., Sun, G., Wang, H., 2019. Materials Characterization 155, 109790.

  37. Microstructure evolution of the TiB2/Al composites fabricated by powder metallurgy during hot extrusion. Yang, Q., Cheng, D.L., Liu, J., Wang, L., Chen, Z., Wang, M.L., Zhong, S.Y., Wu, Y., Ji, G., Wang, H.W., 2019. Materials Characterization 155, 109834.

  38.  Strain measurement of particle-reinforced composites at the microscale: An approach towards concurrent characterization of strain and microstructureF Zhang, Z Chen, S Zhong, H Chen, J Liu, Q Yang, H WangMicron 121(2019)33-42

  39. Degradation of the recoverable strain during stress controlled full transformation cycling in NiTi shape memory alloysYahui ZhangWeichen LiZiad MoumniJihong ZhuWeihong ZhangSheng-Yi ZhongScripta Materialia165201968-71

  40. Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process J Liu, Z Chen, F Zhang, G Ji, M Wang, Y Ma, V Ji, S Zhong, Y Wu, H Wang, Materials Research Letters 6 (2018)  406-412

  41. Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment, X Ju, F Zhang, Z Chen, G Ji, M Wang, Y Wu, S Zhong, H Wang, Metals 7 (2017) 530

  42.  Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al compositesCY Dan, Z Chen*, G Ji, SH Zhong, Y Wu*, F Brisset, HW Wang, V Ji, Materials & Design, 130(2017) 357-365

  43. Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy, Y. Tang, Z.Chen*, A.Borbély, G.Ji, S.Y.Zhong, D.Schryvers, V.Ji, H.W.Wang, Mater. Charact, 102 (2015) 131-136

  44. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites, C. Zhou, D. Chen, X.B. Zhang, Z. Chen*, S.Y. Zhong, Y. Wu, G. Ji, H.W. Wang, Phys. Lett. A, 379 (2015) 452-457

  45. Microstructure and mechanical properties of friction stir processed Al–Mg–Si alloys dispersion-strengthened by nanosized TiB2 particles, S.M. Ma, P. Zhang, G. Ji, Z. Chen*, G.A. Sun, S.Y. Zhong, V. Ji, H.W. Wang, J. Alloy. Compd, 616 (2014) 128-136

  46. Influence of the low interfacial density energy on the coarsening resistivity of the nano-oxide particles in Ti-added ODS material, J. Ribis*, M.-L. Lescoat, S.Y. Zhong, M.-H. Mathon, Y. de Carlan, J. Nucl. Mater, 442 (2013) 101-105

  47. Small angle neutron scattering study of martensitic/ferritic ODS alloys, M.H. Mathon*, M. Perrut, S.Y. Zhong, Y. de Carlan, J. Nucl. Mater, 428 (2012) 147-153

  48. A study of nuclear of interest martensitic steels and FeCr ODS alloys using small angle neutron scattering, M.H. Mathon*, Y. de Carlan, S.Y. Zhong, J. Henry, P. Olier, V. Klosek, V. Ji, Mater Sci Forum, 675-677 (2011) 815-818

 

荣誉奖励:


2015年上海交通大学“烛光奖”一等奖

2017年上海市教学成果一等奖(排2)

2017年上海交通大学教学成果一等奖(排1)

2018年上海交通大学教书育人奖三等奖

2019年上海交通大学教学成果一等奖(排3)

2020年上海交通大学“三八红旗手”称号

2021年上海交通大学教学成果二等奖(排1)

2022年上海交通大学“佳和”优秀教学奖

2022年上海市东方学者特聘教授