CN FR EN
  • 学院概况
  • 人才培养
  • 科学研究
  • 党群工作
  • 菁菁校园
  • 报考我们
龚禾林
长聘教轨副教授、博士生导师
gonghelin@sjtu.edu.cn
021-54743256-316
316

教育背景

  • 2006-2010,清华大学,工程物理系,核工程与核技术专业,学士
  • 2010-2013,中国核动力研究设计院,核能科学与工程,硕士
  • 2014-2018,索邦大学(法国),LJLL 实验室,应用数学,博士

工作经历

  • 2018-2020,中国核动力研究设计院,数字反应堆研究、核能系统数据挖掘研究
  • 2021-2022,中国核动力研究设计院,核反应堆系统数字孪生、数据挖掘研究
  • 2022-至今,上海交通大学巴黎卓越工程师学院,工程科学计算与数字孪生、AI for Science
  • 2013-2014,中国核动力研究设计院,核反应堆在线监测系统研究

研究方向

  • 人工智能:AI for Science、机器学习替代模型、图像超分 工程科学计算:反问题、数据同化、模型降阶、模型校正 数字孪生:模型研究、软件研发、复杂工业系统设施在线监测、健康管理及预测性维护 核工程:数字化反应堆、中子噪声分析、反应堆物理

科研项目

  • XX核电1、2号机组,XX核电5、6号机组反应性辅助决策系统研发
  • 中国核动力研究设计院产业开发项目“xxx运行数据管理系统研发”
  • 中国核动力研究设计院“任意时刻开展通量图试验软件开发”
  • 中国原子能科学研究院“XX模型开发及UI设计”
  • 中核集团领创科研项目“xx数据同化和不确定性分析技术”
  • 国防科技工业核动力技术创新中心项目“基于动态数据驱动的在线监测系统研究”
  • 科工局核能开发项目
  • ZF数字堆项目“基于数据驱动的堆芯物理计算程序研究”
  • 核反应堆系统设计技术国防科技重点实验室稳定支持项目“基于卷积神经网络的长寿命小型堆芯物理关键参数快速评价模型研究”
  • 国家自然科学基金青年科学基金项目“基于模型降阶和数据同化的反应堆在线监测系统探测机理研究”
  • 国家自然科学基金面上项目“多尺度反应堆物理动态行为预测关键技术研究”
  • 国防科技工业核动力技术创新中心项目“基于节块法的堆芯中子噪声建模关键技术研究”
  • 上海市自然科学基金面上项目“基于实时数字孪生的核反应堆堆芯在线监测技术研究”

论文信息

  • Argaud, J.P; Bouriquet, B; Gong, H.*; Maday,Y; Mula,O. Sensor placement in nuclear reactors based on the Generalized Empirical Interpolation Method. Journal of Computational Physics, 2018, 363: 354-370. [SCI]
  • Shi, B., Qiu, Q., Gong, H., Li, Q., & Luo, Y. (2023, August). Noninvasive Data-Driven Prediction of Reactor Power Field: An MLP-Based Approach. In 2023 IEEE Smart World Congress (SWC) (pp. 1-6). IEEE.
  • Li, H., Lu, J., Ji, H., Hong, L., & Gong, H. (2023). A noise and vibration tolerant resnet for field reconstruction with sparse sensor. Communications in Computational Physics.
  • Jianpeng Liu, Zhiyong Wang, Qing Li. & Helin Gong*.A Hybrid Data Assimilation and Dynamic Mode Decomposition Approach for Xenon Dynamic Prediction of Nuclear Reactor Cores.Nuclear Science and Engineering, Taylor & Francis, 2024, 0, 1-19.
  • P. Zhang, H. Gong and K. Wang. Preliminary Study on Neutronics Characteristics of Thorium-based Supercritical Water-cooled Fast Reactor. The 5th Int. Sym. SCWR (ISSCWR-5). Vancouver, British Columbia, Canada, March 13-16, 2011.
  • H. Gong, J. P. Argaud, B. Bouriquet, and Y. Maday. The Empirical Interpolation Method applied to the neutron diffusion equations with parameter dependence. In Proceedings of PHYSOR 2016.
  • J.P. Argaud, B. Bouriquet, H. Gong, Y. Maday and O. Mula. Stabilization of (G)EIM in Presence of Measurement Noise: Application to Nuclear Reactor Physics. In Marco L. Bittencourt, Ney A. Dumont, and Jan S. Hesthaven, editors, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pages 133-145, Cham, 2017. Springer International Publishing.
  • H. Gong, J.P. Argaud, B. Bouriquet, Y. Maday and O. Mula. Monitoring flux and power in nuclear reactors with data assimilation and reduced models. In Proceedings of M&C 2017.
  • H. Gong, Q. Li, Y. Yu, and Y. Maday. “EIM in the frame of least-squares optimal interpolation method.” Annual meeting of Science and Technology on Reactor System Design Technology Laboratory. Chengdu, China, November 6, 2018.
  • H. Gong, Q. Li, Y. Yu, J.P. Argaud, B. Bouriquet, Y. Maday and O. Mula. A new data-driven approach for reconstruction with noisy data and physical constraints: application to nuclear reactor physics. In Proceedings of ICAPP 2019.
  • Z. Zhang, H. Liao, Q. Li, H. Gong, Z. Chen, X. Li, Q. Liu. Error Analysis of LPD On-line Monitoring System in HPR 1000. Nuclear Power Engineering, 2020,41(2): 11-15. [EI]
  • H. Gong, Z. Chen, Q. Li, S. Cheng. Study on a Data-Enabled Physics-Informed Reactor Physics Operational Digital Twin. Nuclear Power Engineering, 2021, 42(S2):48-53. [EI]
  • H. Gong, Z. Chen, W. Zhao, X. Peng, Q. Li and Y. Yu. Development of a neutron noise simulator with SP3 approximation. Nuclear Science and Engineering. 2021, 41(03)491-499.
  • H. Gong; Q. Li, Q. Liu, X. Li, Z. Lu, J. Wang, Y. Xie, Z. Chen, Y. Yu, X. Peng, K. Liu, R. Guo, B. Zhang and X. Wang. 2D1D Coupled Power Reconstruction Method for On-line Monitoring of PWRs. Atomic Energy Science and Technology, 2021,55(02): 272-278. [EI]
  • Gong, H.; Maday,Y; Mula,O; Taddei,T. PBDW method for state estimation: error analysis for noisy data and nonlinear formulation. arXiv e-prints, p. arXiv:1906. 00810, Jun 2019.[EI]
  • Peng,X*; Li,Q; Zhao,W; Gong, H.; Wang,K. Robust filtering for dynamic compensation of self-powered neutron detectors. Nuclear Engineering and Design,2014, 280: 122-129. [SCI]
  • Yang, Q. H., Yang, Y., Deng, Y. T., He, Q. L., Gong, H. L., & Zhang, S. Q. (2023). Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics. Nuclear Science and Techniques, 34(10), 161.
  • Gong, H.; Yu,Y; Li,Q*; Quan, C.Y*. An inverse-distance-based fitting term for 3D-Var data assimilation in nuclear core simulation. Annals of Nuclear Energy, 2020, 141: 107346.[SCI]
  • Gong, H.*; Yu,Y; Li,Q*. Reactor power distribution detection and estimation via a stabilized gappy proper orthogonal decomposition method. Nuclear Engineering and Design, 2020, 370: 110833. [SCI]
  • Gong, H.*; Chen,W; Zhang,C.Y*; Chen,G. Fast solution of neutron diffusion problem with movement of control rods. Annals of Nuclear Energy, 2020, 149:107814. [SCI]
  • Gong, H.*; Chen,Z; Wu,W; Peng, X; Li,Q*. Neutron noise calculation: A comparative study between SP3 theory and diffusion theory. Annals of Nuclear Energy, 2021,156:108184. [SCI]
  • Chen, W.; Di, Y.; Zang, J.; Zhang, C.*; Gong, H.; Xia, B.; Quan, Y.; Wang, L. Study of non-intrusive model order reduction of neutron transport problems. Annals of Nuclear Energy. 2021, 162: 108495. [SCI]
  • Gong, H.*; Chen, Z.; Maday, Y. and Li, Q. Optimal and fast field reconstruction with reduced basis and limited observations: application to reactor core online monitoring. Nuclear Engineering and Design, 2021,377:111113. [SCI]
  • Gong, H.; Cheng, S.; Chen, Z. and Li, Q*. Data-Enabled Physics-Informed Machine Learning for Reduced-Order Modeling Digital Twin: Application to Nuclear Reactor Physics. Nuclear Science and Engineering, Taylor & Francis, 2022, 196, 668-693.[SCI]
  • Gong, H.; Chen, Z. and Li, Q*. Generalized Empirical Interpolation Method with H1 Regularization: Application to Nuclear Reactor Physics. Frontiers in Energy Research. 2022, 9:804018. [SCI]
  • Gong, H.; Cheng, S.; Chen, Z.; Li, Q.*; Quilodrán-Casas, C.; Xiao, D. and Arcucci, R. An efficient digital twin based on machine learning SVD autoencoder and generalised latent assimilation for nuclear reactor physics. Annals of Nuclear Energy. 179(2022):109431.[SCI]
  • Li,W.; Gong, H.; Zang, C*. Solution of Neutron Diffusion Problems by Discontinuous Galerkin Finite Element Method With Consideration of Discontinuity Factors. Journal of Nuclear Engineering and Radiation Science, 2023, 9(3), 031503. [SCI]
  • Yang, Y.; Gong, H.*; Zhang, S.*; Yang, Q.; Chen, Z.; He, Q. and Li, Q. A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems. Annals of Nuclear Energy, 2023, 183, 109656.[SCI]
  • Gong, H.; Zhu, T.*; Chen, Z.; Wan, Y. and Li, Q*. Parameter identification and state estimation for nuclear reactor operation digital twin. Annals of Nuclear Energy,180(2023):109497.[SCI]
  • Yang, Y.; Gong, H.*; He, Q.*; Yang, Q.; Deng, Y.; Zhang, S. On the uncertainty analysis of the data-enabled physics-informed neural network for solving neutron diffusion eigenvalue problem. Nuclear Science and Engineering. 2023. DOI: 10.1080/00295639.2023.2236840.[SCI]
  • Gong Helin, Zhang Shiquan, Yvon Maday. THE OPTIMUM OF EIM MAGIC POINTS AND THE LEAST-SQUARES FORM[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 25-36.

专利著作

  • 基于卡尔曼滤波的 铑自给能探测器信号延迟消除方法
  • 基于卡尔曼滤波的 铑自给能探测器信号延迟消除方法.
  • 基于 IIR 滤波的铑 自给能探测器信号延迟消除方法
  • 基于局 部非线性修正的堆芯功率分布在线重构方法及系统
  • 一种基于 SP3 方程的反应堆中子噪声分析方法
  • 一种用于反应的 LPD 和 DNBR 在线保护和监测的实现方法
  • 用于反应堆运行参数优化的数据同化方法、系统及终端
  • 基于模型降阶和数据同化的堆芯功率分布在线监测方法及系统
  • 一种反应堆堆芯核设计系统及应用

社会兼职

  • 国防科技工业核动力技术创新中心基础理论部
  • 四川省侨联特评专家委

获奖信息

  • 华龙一号堆芯在线监测关键技术研发四川省科学技术进步二等奖
  • 中国核能行业协会科学 技术二等奖,第九完成人
  • 中国专利优秀奖, 第五完成人
  • 中核集团优秀国防科技报告